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Abstract: Given a graph G (N,E) and a length function 1 : E -> V, the

, Graphical Traveling Salesman Problem is that of finding a minimum length

cycle going at least once through each node of G. This formulation has

advantages over the traditional formulation where each node must be

visited exactly once. -W give some facet inducing inequalities of the

convex hull of the solutions to that problem. Some related integer

polyhedra are also investigated. Finally, an efficient algorithm is given

when G is a series-parallel graph.
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s. 1. Introduction

Consider a graph G u (N,E) and a function 1: E --> which associates

the length l(e) to each edge e c E. The classical Traveling Salesman

Problem, denoted by TSP, is that of finding a Hamilton cycle (N,H) of G

such that l(H) - l(e) is minimum. (A Hamilton cycle of G is a cycle
e cH

- going exactly once through each node of G.) The Traveling Salesman

Problem derives its name from the following interpretation: the nodes of

G represent cities that must be visited by a salesman and the edges

represent roads or other transportation links connecting the cities. One

of the cities is the traveling salesman's hometown from which he starts

his tour nd to which he must return.

Two difficulties arise in stating the TSP as above. First, the graph

G may not be Hamiltonian (i.e., G may not have a Hamilton cycle.) Second,

even when G is Hamiltonian, the shortest way to visit all the nodes of G

may not be to follow a Hamilton cycle. Instead, It may be shorter to go

through some nodes more than once and/or use some edges more than once.

The traditional way to overcome these difficulties is to transform G

into a complete graph K 2 (N,F) on the sam node set. The length function

1 : F -> 2 is defined as follows: for every e e F, l(e) is the length of

the shortest path of G joining the endpoints of e S Solving the TSP on K

instead of G clearly resolves the two difficulties just mentioned. Most

of the existing literature on the TSP assumes an underlying complete graph.

However, the transformation of G into K has two drawbacks of Its own.

In most solution techniques a variable is associated with each edge of the

graph. Therefore, the TSP on K requires (INI-1)INI/2 variables even when

the original graph is sparse- which is often the case in applications

(Many applications involv rapha or graphs with small thickness). The

~ ~ ~ * . * ~ # ~ V . -.. ~ -. ** * ,s *~ 1 % .' ~ ~ : ~ .- ; ~ K --.. ceK .
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second drawback is that the original problem on G may be easier to solve

than the TSP on a complete graph. For example, Ratliff and Rosenthal E73

present a linear time algorithm for a version of the TSP that arises in

the context of order picking in a rectangle warehouse. Their algorithm

exploits the structure of the underlying graph G. We extend their results

In Section 5. Another class of graphs for which the TSP can be solved in

linear time is given in Cornuejols, Naddef and Pulleyblank E23. For these

reasons we prefer to avoid using the complete graph K. We propose a

different way to overcome the deficiencies associated with the classical

formulation of the TSP. Our approach is to introduce a new version of the

TSP which we call the Graphical Traveling Salesman Problem. This

formulation has also been used successfully by Fleischmann [4].

A tour of a connected graph G is a cycle going at least once through

each node of G. (Here a cycle may use the same node or the same edge more

k
than once.) The length of a tour Tz(vl,el,...,vk,ek,vl) is 1(T) z l(e).

The Graphical Traveling Salesman Problem, denoted by GTSP, consists in

finding a tour of G whose length is minimum. Of course GTSP is NP-hard,

since, given a graph G, the solution of GTSP with the length function

l(e) = 1 for all e e E, would show whether G is Hamiltonian, a known

NP-complete problem. -.

A graph is Eulerian if it is connected and each of its nodes is

Incident with an even number of edges. It is well known and easy to prove

that if a graph is Eulerian, then it contains a tour using each edge

exactly once El]. Conversely, given a cycle T, the graph H induced by the

edges of T duplicated as many times as they are used in T# is an Eulerian

graph. It T Is a tour of G, then H spans all the nodes of G. In other



words, the tours of G correspond to the spanning Eulerian graphs obtained

from the graph G by removing some edges and duplicating others.

If an edge of G has a negative length, then one can obtain tours of
.%%

length as small as wanted by using this edge an indefinite number of

times. In other words, there is no finite optimum solution. In the

remainder we assume that all edge lengths are nonnegative. With this

assumption it can be shown that there is an optimum solution using any

edge at most twice. (Let T be some tour of G where some edge e is used

three times or more. Consider the edge set obtained by taking the edges

*' of T duplicated as many times as they are used in T and by removing two

*. copies of e. The graph induced by this edge set is Eulerian and spanning.

So it can be traversed by a tour T'. Clearly, l(T') l l(T)-21(e)<l(T).)

* To each tour of G we associate an integral vector x a (Xe: e e E)

where xe is the number of times that edge a occurs in the tour. In terms

of x, the length of a tour is simply I l(e)xe. Note that there is a
e cE

one-to-one correspondence between the vectors x associated with tours and

the spanning Eulerian graphs defined two paragraphs earlier. In general,

however, the same vector x can be associated with several tours. (For

example, if G is a star and xe z 2 for all e e E, the tours associated

with x can visit the branches of the star in any order.) Nonetheless, we

will call the vector x associated with a tour, a tour itself.

In this paper, for U C E, x(U) denotes S Xe.  For S; N, Y(S) '
egU

denotes the set of edges with both ends in S and a(S) those with exactly

one end in S. Also, 8({v)) is abbreviated by 6(v). Given a finite set J,

it denotes the set of vectors x - (xj: J. gJ) whose coordinates are real

valued and indexed by the elements of J.

. % ' w .
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With this notation, the tours of G are those vectors x C IR which

satisfy f

(1.1) x 0 and integer for all e g E,

(1.2) x(6(v)) is a positive even Integer for all v a N,

(1.3) the graph induced by the edges such that xe > 0 is connected.

Conditions (1.2) and (1.3) follow from the fact that the graph

obtained from G by making x copies of edge e must be Eulerian and

spanning. An equivalent characterization of tours is given next.

An edge outset U G E of G is a set of edges such that U. 6(S) a

S(N-S) for some nonempty S C N. The sets S and N-S are called the shores

* of the edge outset U. A vector x E  is a tour If and only if It

satisfies conditions (1.1), (1.2), and

. (1.4) x(U) > 2 for every edge outset U of G.

This condition follows from the fact that a tour corresponds to a

spanning cycle of G and cycles have even cardinality intersections with

every edge Outset.

The convex hull of the tours of G will be denoted by GTSP(G). Note

that this polyhedron is not bounded and that the classical traveling

salesman polytope TSP(G) -- namely the convex hull Incidence vectors of _.A
the HamiltonSw cycles of G - is a face of the polyhedron GTSP(G). In

2 Efact TSP(G) = GTSP(G) ( {x gS : x(E) z INI}.

" In Section 2 we show that, when G is connected, the polyhedron

GTSP(G) is full-dimensional, i.e., it has dimension lEI. The Inequalities

(1.4) define facets (i.e., faces of dimension 1El-1) of this polyhedron if

and only if the graphs induced by the shores of the edge outset are both

connected. These facets are in fact the subtour elimination inequalities

which have become usual in the definition of TSP(G).

____ L



The main result of Section 3 is a class of valid inequalities, called

"path inequalities", for GTSP(G) which are shown to generalize the comb

inequalities for TSP(G), see Grotschel and Padberg [6]. Other classes of

facets are also presented in that section.

In Section 4 we introduce four polyhedra which are related to

E
GTSP(G). In particular we give a full description of P (G) conv{x e IE

E
(1.1) and (1.2) hold) and P (G) = convlx e : (1.1) and (1.3) hold).

The polyhedron P (G) conv{x g : (1.1) and (1.4) hold) contains TSP(G)

as a face and is also studied.

In Section 5 we introduce a generalization of the graphical traveling :

salesman problem. In addition to the graph G and the length function 1,

we are given a subset V G N of the nodes. A Steiner tour is a cycle going

at least once through each node of V. However, the cycle is not required

to pass through the nodes of N-V. The Steiner Traveling Salesman Problem,

denoted by STSP, consists in finding a Steiner tour of minimum length. Of

course GTSP is the special case of STSP where V-N. We give an efficient

algorithm to solve STSP in series-parallel graphs.

2. The Graphical Traveling Salesman Polyhedron

Full-dimensional polyhedra have the desirable property that a minimal ,.....

set of defining inequalities Is unique up to scaing any Inequality by a -

si. .

positive constant. Moreover, in such a set, each Inequality induces a

facet. In other words, each facet has a unique description by a linear

inequality, up to scaling by a constant. Of course, this is no longer

true when the polyhedron is not full-dimensional. First, we show that the

graphical traveling salesman polyhedron, GTSP(G), is full-dimensional if

and only if G is a connected graph. Then we show that the convex hull of : . "

.-. Fe.F
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the extreme points of GTSP(G) is a full-dimensional polytope if anJonly if

i G is a connected bridgeless graph. (A bridge is an edge outset of "

cardinality one.) Other results relating the connectivity of G to the TSP

can be found in E5.-

Theorem 2.1 If G is a connected graph, then GTSP(G) is full-dimensional.

Otherwise GTSP(G) is empty.

Proof: If G is not connected, no tour exists. If G is connected, then

consider any tour x and the l£t tours x+2y where y is the unit vector

i Isuch that yizl and ygO for JAI. These I£E+1 are affinely independent. -

Theorem 2.2 Let G be a connected graph with k bridges. The convex hull

of the extreme points of GTSP(G) is a polytope of dimension IE1-k.

Proof: It follows from the remarks made in the introduction that every

extreme point x of GTSP(G) has components xe which take the value 0,1, or

2 for every e e E. If e is a bridge, then xe 2 as a consequence of

condition (1.14).

Denote by P(G) the convex hull of the extreme points of GTSP(G). We

have Just shown that, if G has k bridges, then dim P(G) < JEl-k.

Conversely, we show that dim P(G) > tEl-k by induction on the number

. of edges of G. The property is true when tE1 a 1. Now take a connected

graph G = (N,E). Let k be the number of bridges of G and let e be an edge

such that the graph induced by the edge set E-le) is connected. We denote

this graph by G-fe).

-. ; ; ° -. A
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If a is a bridge of G, then, by the choice of e, e is a pendent edge.

Therefore G-fe) has k-1 bridges and, by the induction hypothesis, P(G-

{el) contains IEI-k+1 affinely independent tours. All these tours can be

extended to tours of P(G) by adding the component x : 2. So dim P(G) >-

dim P(G-{e)) a lE-k. .

Now assume that e is not a bridge of Go The graph G-(e) contains the

k bridges of G and possibly p new bridges, say el,...e p. By induction,

dim P(G-le)) (IEI-1)-(k+p). Consider IEI-(k+p) affinely independent -

tours of P(G-{e). We can extend them to tours of P(G) by simply adding

the component xe=0. In addition, note that one of these tours, say i, can

be chosen-so that =i-2 for every edge of a spanning tree of G-(e),O

otherwise. We will construct p+1 new tours from 1. Let P be a path of G-

{e) joining the endpoints of e and such that I >0 for every edge i of P.

Note that the p bridges e,....,e p belong to P. Define the tour x* by x=

i for i 4 P, xi* = l1-1 for I c P and x- 1. In addition define the

tours x , jul,...,p, by x CIi for '

i A e, e~ and x~ :0, x~ z 2. So we have a total of IEI-k*1 tours ine
P(G). To show that they are affinely independent, let us subtract I from

the lE1-k others. We get the matrix S

€ i T- - --- 2___-'..,_

x X .F

S...:.'%
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It is easy to check that the rank of this matrix is IEl-k. So dim

P(G) > IJE-k. 4 L

The rest of this section is devoted to identifying valid inequalities

and facets that define the polyhedron GTSP(G).

- Theorem 2.3 The inequality xe > 0 defines a facet of GTSP(G) if and only

if the edge e is not a bridge of G.

Proof: If e is a bridge of G, then xe_ 2 in every tour of G.

Conversely, if e is not a bridge, then let x be a tour such that x 0.

(Such a tour exists since G-{e} is connected.) The tour x and the IE-1

tours x+2y , iie, are affinely independent, where y is the unit vector

i i,
* such that yj :any 0 for A1. 8

For any node set S N, we denote by G(S) the subgraph of G induced

by S.

Theorem 2.4 Let U be an edge outset with shores S and . The valid

inequality x(U) > 2 is a facet of GTSP(G) if and only if the graphs

G(S) and GM[) are both connected.

Proof: If, say, G(5) is not connected then let S1 C S be a node set which

induces a connected component of G(S). Then the cutset i(S is strictly

contained in U. Therefore the valid inequality x((S 1)) 2 2 is stronger

than x(U) > 2, showing that the latter inequality cannot produce a facet.

. Conversely, assume that G(S) and G(3) are both connected. For each

u u u
u Ulotx beatour suchthatx x 2and x 0 for every e c U-ju).

.4% %

.,o • "%4* -

4' ..
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* Let xM be one of the IUI tours just defined. Consider the tours x* 2Y

for i € E-U, where y is the unit vector such that y 1 and y = 0for

j i i. The IE1 tours {Xu : u € U) u {x*+2y : i € E-U) are affinely."

independent and they all satisfy x(U) = 2. M

It would be interesting to characterize the graphs G for which the

facets of Theorem 2.3 and 2.4 completely define the polyhedron GTSP(G).

A small graph for which these facets are not sufficient is given in

Figure 1.

Figure 1

* Note that the vector X such that x a 1 for every e e E satisfies the

inequalities x(U) > 2 for every edge outset U, yet it is not a tour. In

* fact this vector satisfies x(E) =9 whereas it is easy to see that every

tour satisfies the inequality x(E) > 10. Actually the inequality x(E) > 10 a

* is a facet of the polyhedron GTSP(G) for the graph G of Figure 1. We will

prove this in the next section as a special case of a more general result.

Paths with endnodes i and j are said to be internally node disjoint if

they only meet in nodes i and J. When two distinct nodes of G are joined

by An odd number of internally node disjoint paths of length 3 or more, we
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will show in Section 3 how to generate a facet of GTSP(G), called path

inequality. These inequalities generalize the 3-star constraints defined

*by Fleischmann [1J and the comb inequalities of Gr~tschel and Padberg [6].
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3. Facets of the Graphical Traveling Salesman Polyhedron

Let G =(N,E) be a connected graph. Given two disjoint sets of nodes

NjNC N, we denote by (N1,N) the set of edges of G with one end in N,

and the other in N12 In the following, when we refer to two edges Of
2*a

(N19N2) these two edges may or may not be distinct.

A k-path configuration (see Figure 2) is defined by

(3.1) an odd integer k > 3 and integers ni a 2 for iml...,.kq

i

j:1,...nj). For convenience, let Bo 9 A and Bi 3 Z for+i1-

(3.3) The graphs G(B ) are connected for ixl,...,k and J=O,...,ni+1.

(3.) Te ege et(B OB i) nonempty for every i:1,..*qk and

(3.5) Th edg se s1+

% %
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where

1 for e c (AZ),

IJ-pI for e e (B ,B ), ixl,...,k and j~p such that
p

lij-pl < ni,

(3.6) fe max P J-2 j p-2 for e (BiBr),p iAr,

j:l,..., n and pzl,...,n

0 otherwise.

An interesting special Case is obtained when ni = > _ 2 for all

i=l,...,k. Such a configuration will be called n-regular. We can

multiply the inequality (3.5) by n-1 to obtain Integer coefficients. We

get

(3.5') ge g > kn n k-1

where

n-1 for e g (A,Z),

(3.6') go IJ-Pg for e e (BB), i-1,...,k and JAP such that

ij-pl < n,

li-pt . 2 for e c (B ,B~ i~r and j,pz1,...,n,

, .0 otherwise.

When k*3 and nx2 this is exactly the 3-star constraint given by

Fleischuann [4.

P WP..--' de
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kLet a = 1 + (ni+l)/(ni-1). The skeleton of a k-path configuration

is the set of all edges in (B i ) for i:1,...,k and j=O,...,n i and all

edges with both ends inJB for izl,...,k and j=O,...,n

Theorem 3.1 Path inequalities are valid inequalities for GTSP(G).

Proof: Note that, since f > 0 for all e € E, it suffices to prove the

validity of the inequality - fe Xe 2 a for a complete graph in order to
e#E

prove It for all graphs. To show the validity of the inequality E feXe> a

we will show that, for the length function defined by the reS, the length

of any tour x is at least a.

First consider a minimum length tour x which only uses edges of the

skeleton. Any such tour has the following form. For some iz1,...,k and

J =O,...,nt,9 the tour x uses a single edge of (BiB +1) for i ii and it

uses two edges of (B B 1) except for j=j* for which none is used. In

other words, k-1 of the paths joining A to Z are used once whereas the

last path is broken into two parts each used twice. The choice of the

values of the f*'3 is such that, for any t' and JO, the length of x is a.

So, if a tour shorter than a exists, it must use some edges which are

not in the skeleton. Let x be a tour shorter than a such that the number

of edges not in the skeleton is minimum among all the tours which violate

the inequality.

It is easy to see that x does not contain any edge from (BJBp) for

izl,...,k and 2 < p-j < n1 , since one can replace any such edge by a path

using one edge from each (1 3t1 ), tzj,...,p-1. The resulting tour has

the sam length but uses less edges outside the skeleton.

~{%~~/.'X~f. ~.~ x*.7 ~~' ~ (A~.*~ . -
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Next We wili show that x cannot contain an edge of (A,Z). Let e c

(Bi Br) , rni. Without loss of generality f ap/(fln1 > j2/( I

J/(n I-1) - (p-2)/(nr-I). Therefore, (p-l)/(n -1) > j-.1)(n-1 an

~ 1(n.-) 1(n-I). This shows that the shortest edges with one

node in the set Bbelong to the skeleton. As a consequence, the shortest

completion of an edge of (A,Z) into a tour of G uses a single edge of each

* (B , B ). But such a tour saktisfies (3.5). So x does not contain an

* edge of (A,Z). r

*Now we use the fact that k is odd. Since x does not contain any edge

* from (A, B) for iz1,...,k and Jz2,..qni.e1, there Must exist some

32s1,...,k such that either 0 or 2 edges Of (A,B) beogt3h orx

First assume that x does not contain any edge from (Bi B) where s isa'p
* the index defined above, iAs, t<i<k, jzl,...,n I and pa1,...,n 3. Then x

contains two edges Of each (Bj,Bj~1 ), t:0,...,n 3, except perhaps for one

value of t. But then the tour obtained from x by taking the sam edges

th ss3
Outside the 3 path, taking one edge of each (B ,Bt+ ). t:0,..,,n 3, and

* one edge from (A,Z) yields a tour of length at Most that of x, which we

* Just saW is impossible.

So x must contain an edge from (BB) for some ius, t<i<k,

jxl,,,,n and pzl,..on 5  Among all such edges, let e be one

corresponding to the smallest Value Of p. By the choice of p and s, the

tour contains two edges of (B B for every t=0,...,p-1 except perhaps

for one value of t. Since f e 2 J/(ni-l) - (p-2)/(nn-1), the tour obtained V

5 5from x by deleting e, replacing the edges of (Bt ,Bt+i), t:0,...,p-1v by

one edefrn ac Bg-+) t=0,...,p-1, and finally adding one edge

from each (Bi Bi+) tz0q***,j-1, yields a tour of length at Most that oft t

x and with one less edge Outside the skeleton, which contradicts the

minimality of x.



This completes the proof. i

Theorem 3.2 Path inequalities define facets of GTSP(G).

Proof: Let evE fexe > a be a path inequality (which we will refer to as

inequality 1 in this proof). Assume it does not define a facet. Then

there exists an inequality, say Z e X > a (inequality 2), such that thee1E e e
face defined by the first inequality is contained in the facet defined by

the second. Our aim is to show that cezfe for all e g E.

First we show that cezO if e has both ends in the same set B for

izl,•.,k and J:O,...,ni+ 1. Let x be a tour which satisfies inequality 1

with equality. (Such tours exist as we have seen In the proof of Theorem

3.1.) The tour x must also satisfy inequality 2 with equality. Now

consider x+2y e where ye is the unit vector such that yez1 and yt:O for

" tie. Since fe:O, this tour satisfies inequality 1 with equality.

• Therefore it must also satisfy inequality 2 with equality. Since both x

and x+2ye satisfy inequality 2 with equality, we must have ce:O.

Next we show that c e has the same value for all edges in (Bi,B +1 )

and then that this value does not depend on J. Let x be a tour which

satisfies inequality 1 with equality and which only uses edges of the

skeleton. As pointed out In the proof of Theorem 3.1, there exists such
I.5.

an x which only uses one edge of (B ,BJ+I), say edge e1 . Modify x so that

it uses another edge of (Bi B , say edge instead of e1. In order--. j*e 2,"-""

i Ito still have a tour we may have to change x within B and B .1, but we

- can keep x unchanged anywhere else. Since both tours satisfy inequality 1

(and therefore inequality 2) with equality we must have co z Ce2. Now

1 2

of(r Br)isuelot x be a tour of the skeleton such that one edge of (B ,Bp+r 13 used

*..:..C ** * **,CC C:*.:..C ' % % S .]S
o.e e . . . C . ~ ~ . . C*. * . ~ * * * ' . C * ~ * ~ 'I
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* for all rni and p=O, r,nr, and two edges of every (B ,B 1 ) are used
ris J+1

except for one index j=j*. Any tour obtained from x by Just changing the

value of j' satisfies both inequalities with equality which proves that

there is a constant c such that cec for all e c (B ,B 1 ), J=0,..•.,n.

The tours just defined satisfy both inequalities 1 and 2 with equality for

iany value of i:1, ...,k Hence, the constants c Must satisfy a system of

ik equalities whose unique solution is a =1/(ni1) for i"...,k.

Now let e* be an edge not in the skeleton, and let x be a tour using

e and edges of the skeleton. In addition, assume that x satisfies

inequality 1, and hence inequality 2, with equality. Such a tour exists

by our choice of the coefficients f e •  Since ce f e for all edges in the

skeleton, we must also have Cemgfe, which completes the proof. M

We have pointed out earlier that TSP(G) the convex hull of the

incidence vectors of the Hamilton cycles of G - is a face of the

polyhedron GTSP(G). We will show how the path inequalities relate to

well-known facets of TSP(G).

A comb is defined by a set WOC N called the handle and k disjoint

subsets Wl,•..,Wk C N, k odd, called the teeth, each of these subsets

having a nonempty Intersection with Wo. The comb inequality associated

with the comb (Wo,W,*.,,Wk ) is

k k
x(-l(W)) < - IWI - (3k+1)/2.-

130 i0

Gr~tachel and Padberg [6] showed that these inequalities are facets of

TSP(G) when G is a complete graph.

•7* 4''' - '-':':'''x,. .a ' " """ "' "' "" "" ",'' u,:',,-'' """ ":,_" "" "" " """: -: -
. JP*\."_'.'*** .t'_,., *. _,'_,4 _*._ *. ***,****o, -*-**q_ *_._. '._** **' *-** r**_*_,_ .. .. .
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Theorem 3.3 The path inequalities generalize the comb inequalities such .

k k
that W0 - u U1 A 0 and u W1 A N. More precisely, these comb

121 ±20

inequalities define the same faces of TSP(G) as the 2-regular path

inequalities.

Proof: Recall that a 2-regular path inequality f e Xe a is one where ,
-eeE ee:

fl=2 for all i:l,...,k. Let {A,Z,B 1.2.,k) be the node partition

k 
owhich defines the corresponding path configuration. Let W 0 = A U( u B )t:1

I3 1
tand W1  B U B for i:1,...,k. We will show that the comb inequality

associated with (WO,W1,...,Wk) can be derived from the 2-regular path

inequality and the equations x(6(v)) : 2 for all v 9 N.

These equations imply that, for any W C N,- x(V(W))=IWl -x(W,9)2.

Therefore,

k k .

Z X(Y(W)) (W - x(Wii)/2)

i01:0 e
k

Z Z U~ -W I g x )/2, as defined in (3.6')

< Z 1W 1 - (3k+1)/2, by (3.5'). 3
ISO

An obvious question at this point is whether the comb Inequalities
k k.'.,.

with either u - : or u Wt  N can also be generalized to facets
0" 1 0.

.vp.~ % %**~.*% .,* J%~ *.%P~ V~ V . . ~ V . .* *** *]%*%% %**.%*% *.**S**%~ % %. .'. %':- -*.- %.* *%'5% %*.s*..:;*
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of GTSP(G). We will show that this is indeed the Case using the concepts

of wheelbarrow configurations and bicycle configurations. These

configurations are very similar to k-path configurations, the main

differences being that Z=8 and AzZ=M respectively.

e More specifically, a wheelbarrow configuration (see Figure 3) is

defined by

(3.7) an odd integer k>3 and integers ni22 for i:l,...,k,

(3.8) a partition of the node set N into (A,B i for izl,...,k and

* j:1,...,n}1 . For convenience, let B0:A.

(3.9) The graphs G(Bi) are connected for i:1,...,k and j:O,...,ni.

( (3.10) The edge set (B ,i ) is nonempty for every itl,...,k and

j=O,... ,ni-1.

i iWl
(3.11) The edge set (B-nI B +1 is nonempty for every ll,...,k.(31)pe desti(nn+l -

In (3.11) and in the remainder of this section, the index i+1 is

defined to be equal to 1 when iak. In general indices will be defined

modulo the largest value that they can assume.

A bicycle configuration (see Figure 3) is defined by

(3.12) an odd integer k>3 and integers ni 2 for i=l,...,k,

(3.13) a partition of the node set N into {B for i:l,...,k and

(3.14) The graphs G(B are connected for i:l,...,k and Jil,...,ni.

(3.15) The edge set (B,B+i ) is nonempty for every xl1,,.,,k and

i ii
_i L1+1 (Bt , t

(3.16) The edge sets (B1 ,B 1 ) and (B B ) are nonempty for every
hi+1

." . . . . .. . .... ... • , .. ,..., ,... ... ... ., . ,. ,....,.. .. .. ,. .... ,.,... . .. . ... .... .. . ,,... , . ,. ,. , , ., ,-? - em.,

.' .,,. : . ,*.- '/:;-, -,_0 ; _:. :, : :,_:.,4_::,_Z, -.-Z, ,..,:'. - /,'.:': '
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Figure~~~~~ A. whebrrwadaiyl

* go

,.D", , , ..:-_

Figure 3. A wheelbarrow and a bicycle L--

The wheelbarrow inequality associated with a wheelbarrow

configuration and the bicycle inequality associated with a bicycle

configuration are both defined by

(3.17) E f > a
esE e e

where a is as defined earlier and

n=-- for e e (BBp), itzl,...,k: and JAP such that Ij-pl<ni,

i2

(3.18) f max( -, - fore £ (B•,,r), idr,
r i L r

J=l , ,ni  and p 2l,...,nr,

0 otherwise. * .<

As earlier, a n-regular configuration is obtained when ni n > 2 for

all izl,...,k. The inequality (3.17) becOmes

(3.17') Z 9exe > kn k n -1

ecE

where

.-...-..

40
v , a It
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SiJ-pt for e gC(B ,B~ iL1,...,k and jAp such that
li-pt <. n'

(3.18') £ 1 J-p 1+2 for e e(Bi , iir and J,P=1,...,nt

rn (~0 otherwise.

Theorem 3.41 Wheelbarrow and bicycle inequalities are valid inequalities

for GTSP(G).

Proof: First Consider a wheelbarrow configuration (AB~ for iul,...,k and

i:1, ....n i) and the associated inequality. Let GO be the graph

constructed from G by adding a node z joined to at least one node in each -

B for izl,...,k. This defines a k-path configuration in G', namely
ni

(A,(z),B1 for i:1...,,k and j=1,...,ni). Extend, the definition of fe to

* every edge in GO using (3.6). We know that, for the length function

* defined by the fe '3, every tour of GO has length at least a.

* Now let x be a minimum length tour of G. We can assume that x does

not contain any edge from (BJ,B) for p >J+2 since this edge could be

replae yapt ftesm length Using one edge of each (Bi Bi

* t~joesepp-1.

* If x does not use any edge from (Bi Br for iAr and Jz1,...,nit
I'P

k
* pul,...,nr then its length is Z 2ni/(ni-1) > a. SO assume that X Uses

iu

such an edge.

Among all such edges, let e be one corresponding to the largest

possible value of p. Say e e (Bi Br). Then by our choice of p, the tour

contains two edges of rB,~1 fo ta,.,r-1, if p<nr et x'b
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the tour of GO defined as follows. Remove the edge e from x and ,if

p* Pfr, remove also one edge from each (BtBt, 1 ) for t=p,, .. nr-1. Then add

r ±
one edge from (B. ,z)) as well as one from ([z),B n and one from each

(BI i t1. Since1 f1> - j-2 the tour x is at least
ri

*as long as the tour V'. So V' has length at least a.

Now consider the case of a bicycle configuration. We construct a

graph G''I by adding to G a node a joined to each B1 for i:1,.....k. We

will use the fact that the wheelbarrow inequality associated with [((a,B 1

for i:1,...,k and j:1,...,n 1) is valid in G''. Given a minimum length

tour x of G with no edge from (B1 B1 ) f or p 2. J+2, let e be an edge ofa' p
(B1 Br) Ur, corresponding to the smallest value of p. Remove from x the

j'p
rredge e and, if necessary, one edge from each (Br ,Bt ) for t:1,,,,,p-1.

t t+
Then add one edge from (B,ta), one from (hi),B) and one f rom each'1

(EIBB 1  t1..j1 Since f > ~ . the tour x'' of GO' just

constructed is at most as long as the tour x. Therefore Z fex >
Ce -

Z fexl'> a.
e gE

* 4
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Theorem 3.5 Wheelbarrow inequalities define facets of GTSP(G). Bicycle

Inequalities such that the edge sets ( 1 2 ) and(BI B1 2  are nonemptyn "

for every lzl,...,k, define facets of GTSP(G).

Proof: The proof is very similar to that of Theorem 3.2. Let E fexe > a
e ge

be an inequality associated with a wheelbarrow or a bicycle configuration.

* (We will refer to this inequality as inequality 1 in this proof.) Since

it is satisfied with equality by some tours (see Figures 4 and 5), it

defines a face of GTSP(G). Let E cex e > a (inequality 2) define a facet
esE

which contains the face defined by inequality 1. We will show that ce  f e

for all ecE. As in the proof of Theorem 3.2, we must have c :0 for every

edge e with both ends in B, i-1,...,k and Ji(O,)l,2,...ni, and ce must

I I
assume the same value for all the edges in the edge set (B BB ).j J+1

Now consider the wheelbarrow inequality and the tours of Figure 4(a)

where we vary the index j of the set (B, Bjl ) whose edges are not used in

the tour. Since all these tours satisfy inequality 1 (and therefore

inequality 2) with equality, there must be a constant ci such that ce:c

for every edge ee(B .Bi +1) and every j=O,..,,n 1 -l. Furthermore, comparing

the tours of Figures 4(a), (b) and (a) we get the following equations, for

i:1,.,.,k, where b1 is the value of ce for e C(B 1B

niI n~- n1 ,-

• ~ ~ •+ • in-l 1 .

bi. + bi + (nt-2)ct z bi_ + ni~c~ a bi + hi. 1  •

The solution of this system is at a nd bt  + nal for .

n i- 1 1 + -

t1l,...,k. Writing once more that the tours of Figure 4 satisfy

Inequality 2 with equality, we get &21. So ceufe for all the edges of the

..o
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(b)

Fiue4 Tusstifigt e whelaro inqaiywt qaiy .:.j.:

I '

Figure 4i. Tours satisfyng the wheelbarrow inequality with equality. 
..-

Now consider the bicycle inequality and the tours of Figure 5(a)
e, I I

where we vary the index j of the set (B B ) which does not have any

edge in the tour. This shows that there is a constant aL such that e- s
for every e g(DB B and every jsl,,,,

for ver e and....n-1 Let bi be the value of ce ;
-,-,..
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I +1 W
fore S (B B ) and d the value of Ce fore l 1 ' . By comparing

the tours of Figures 5(c) and 5(d), we get
= + i+ 1

b + (ai -1)ca d + (i+l- 1c

By comparing the tours of Figures 5(e) and 5(f), we get

d + (n -1)0 z b + (nl-1)

This implies that biudi and that (n-1)c1  a (n1 -1)0
1'l. Therefore,

there exists a constant a such that C a, for izl,...,k. Finally,
ni-1

comparing the tours of Figures 5(a) and 5(b) we get

I 1+2
.(n-2)c + b+d= (n -2)c + b + d

This implies bi a d1 = + . Writing that the tour of Figure 5(a);.i-;ni'1 nil 1

satisfies inequality 2 with equality, we get e1. So ceafe for the edges

of the skeleton.

Finally, we have to determine ce for the edges which are not In the

skeleton of the wheelbarrow or bicycle configurations. For each such edge

e* we will show that there is a tour which uses the edge e* and only edges

of the skeleton, and which satisfies inequality 1 with equality. The fact

that this tour also satisfies inequality 2 with equality will imply that

,_+1 _t+1.

When e*  B ,B1') i=O,...,k-1, and p-j>2, it is easy to obtain the
.... '

required tour by modifying the tours

I-'.

,..;

gO'.

v*O.-'

,tir-
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*(a) (b) T7

&• Lko ". "

(a) (d) -- ::--

Figure 5 Tours satisfying the bicycle inequality with equality.

of Figures 4(b) and 5(d), so that they use the edge e' instead of the path

(B1  'B ) 1 jO.91

i r

When e' £(BiBr) for i~Er, the required tours are given in Figure 6.
i p

Without loss of generality we assumed that fe -2 l -2
n1-n-i nr-1 n -1

h h+1in the figure. Note that the cycle (Bn hB ),+ h:1,...,k is broken into

nhnr
two sections when B and B are removed, one of them being Possibly

h

contains an add number. The pattern of the tours is different in the odd

and even sections. In particular the pattern for the bicycle

41: >.
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configurations requires edges in soM of the sets (B1  t and (B B
.~~ n.-.

h-2 ~h

for h in the odd section. 1aB

This completes the proof of Theorem 3.5. 3

I-; I

Figure 6.

Theorem 3.6 The path, wheelbarrow and bicycle inequalities generalize all

* the comb inequalities.

Proof: The proof of Theorem 3.3 is still valid when Z=O and/or when A=B. a

We conclude this section with another class of facets of GTSP(G). A

hypohamiltonian graph is a nonhamiltonian graph such that the deletion of

any node yields a hamiltonian graph. The Petersen graph is a classical

example of a hypohamiltonian graph. Let Al,.,.,Ak be a partition of the

node set of Gz(N,E) with the following properties:

(3.19) each graph G(Ai) is connected, ifl,...,k,

(3.20) The graph G0 obtained by shrinking each set Ai to a single node a"

contains a hypohamiltonian subgraph which spans all the nodes si t

"A.-
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Let H be an edge maximal hypohamiltonian subgraph of Gin, i.e. , the

addition of any edge of GO to H would make H hamiltonian. Denote by F the

edge set of H.

Theorem 3.7 Let Al...,,A be a partition Of N satisfying the conditions

(3.19) and (3.20), and let F be the edge set of a maximal hypohamiltonian

subgraph of GO. Then the following inequality is valid and defines a

facet of GTSP(G).-

I fox > INI .1

eE

(1 if e e(AiA) and a aj c F,

where f~ 22 If e e(Ai9A) and a a j Fv

0a otherwise

Proof: The fact that the Inequality is valid is obvious. Assume. that it

defines a face of GTSP(G) which is not a facet, and let Z a xe 1 -
eEee Ejl

be an inequality defining a facet of GTSP(G) which contains that face.

First note that ceZ0 for every edge e with both ends In the same set

Ai Next we show that, for any given ial,...,k, the va lue of ce is the

same, say a zo , for all the edges e s(A1*A) such that aiaj e F. Since

H - (ai is hamiltonian, there is a tour of H Using a Hamilton cycle of

H - (ai and some edge ai a F twice. This tour satisfies Ef~ N.

and therefore also Z C x* a IN1ial. By changing the edge ec(AisA) such

that si ajeF, we~ ge that ce is identical for all these edges, say Ce:o

Since this argument holds for any i:1,...,k, and since G is connected, the

constant c does not depend on i and ac 21. a
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Finally, lot e e(A1 9AJ) such that a aj 0 F. There exists a Hamilton

cycle which uses e and only edges of F. Since this Hamilton cyele is on

the face defined by Z fexe> INIl+, we must have c,=2. U

4. Some Relatod Integer Polyhedra

First consider the polyhedra P (G) and P2 (G) defined in the

Introduction. Recall that P1(G) is the convex hull of the nonnegative

integer vectors x c aE satisfying

(1.2) for each node v of G, the sum of the values xe over the edges e

incident with v is even and at least 2.

The polyhedron P (G) is the convex hull of the nonnegative integer2

vectors x e RE satisfying

(1.3) the graph induced by the edges of G such that x > 0 is connected.

Theorem 4.1 The following system of linear inequalities are sufficient to

define PI(G) and P2 (G).
E1 2

P (G) = {xt E: xe 0 for all egE and x(d(v))>2 for all veN,

P P2(G) = {xcR: x(F)_p-1 for all FE, where p is the number of

connected components of G\F I (N,E-F)}.

Proof: To impose condition (1.2), add a triangle to each node veN. See

Figure 7. Consider the b-matching problem with equality requirements at

)Gd

Ir

Figure 7.

- *~*****' .. *. * ~ . . * * *. .% %.*
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each node (:2D at node v and D-1 at each of the additional nodes v' and

vw'). Then the solutions of the b-matching problem are exactly the

nonnegative integer solutions satisfying (1.2), assuming that D is large.

Take D to be odd and large. Then the requirement at each node i of

the expanded graph is an even bi, so there is no blossom constraint in the

b-matching problem. In other words, the b-matching polyhedron is given by

xe > 0 for all ecE,

x x'" + x(6(v)) : 2D for all vel here 6 is defined in G3,

v vfoal e hr

' + xv  D-1 for all veN,

Xvt I x D-1 for all veN,v v

XvtX tX ' > 0 for all veN..
v

The variables xv and x'p are easily eliminated from this system. The

remaining system in terms of Xe, ecEand Xv, vN, is

xe > 0 for all eCE..

xv a x(A(v)) - 2 for all veNl

xv > 0 for all vei.

-..

Again It is easy to eliminate xv . So we get

PI(G) z {xgE: xe > 0 for all seE and x(6(v)) > 2 for all vcN).

Now consider P2(G). The condition (1.3) can be stated using matroid

terminology. It says that x>y for any vector y which is the (0,1)-

%-'
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Incidence vector of a spanning set of the graphic matroid associated with

G. Equivalently y* a 1-Y is an Independent set of the dual matroid NO.4

The system Of Inequalities describing the convex hull of the yR's is

yo > 0

YOMF < r*(F) for all F!9E,

where rf i3 the rank function of MO (3]. r* i3 related to the rank

function r of 14 by r*(F) IFI *r(E-F) -r(E). So the convex hull of the

vectors y is

y< 1

y(F) > r(E) -r(E-F) for all FS E.

Therefore the polyhedron P (G) is

P 2(G) (xdE: x(F) > r(E) -r(E-F) for all FG E).

* For a graphic matroid, r(E) - r(E-F) is one less than the number of

connected components of G\F a (N,E-F).

*Def Ine P 3 (G) as the convex hull of the nonnegative integer vectors

1gCE Satisfying

(1.14) the sum Of the values xon any edge outset is at least 2.

Remark 14.2 P (G) Ca P (G) since all the constraints x(S(v)) > 2 whi ch

define P (G) are also valid for P (G). In general the Inclusion is strict.

.43
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URemark 14.3 P (G) C P(G). In fact none of the inequalities x(F) > p-i

*which def ine P (G) are tight for P (G). It is easY to show that the

- ~ system x(F) > p for all F !E, where P is the number of connected

components Of G\F, is valid for P 3(G). This follows by taking linear

combinations of the valid Inequalities Xe> 0 and x(F) > 2 for any edge

h. cutset F.

Remark 14.4 GS(rPand in general the Inclusion is strict as shown by

the example of Figure 1. In that example, the point x z1 for all egE is

an extreme point of P (G) which does not belong to GTSP(G).

Remark 14.5 The extreme points of GTSP(G) are those extreme points of

* ~ P(G) which are also extreme in P (G).

Remark 14.6 GTSP(G) and P 3(G) are both full-dimensional polyhedra and they

* both have TSP(G) as a face.

* Define the polyhedron P14(G) as

E
20()z(x ~ for all egE and x(F)>2 for all edge cutiets ME).

In general P14(G) has fractional extreme points. An interesting question

is to characterize those graphs G for which P14(G) has only integral

extreme points, i.e., when P4 (G)sP 3(G). We do not have a complete

characterization of these graphs but only a sufficient condition.
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A series-parallel graph is any graph that can be obtained by a

recursive application of the following operations, starting from the graph

consisting of two nodes joined by an edge.

(4.1) duplicate an edge (i.e., add an edge joining the same end nodes),

(4.2) replace an edge uv by two edges uw and wv where w is a new node.

Series-parallel graphs will be discussed at greater length in Section

5. Here we just prove the following theorem.

Theorem 4.7 If G is a series-parallel graph, then P3 (G)xPM(G).

-...

I' Proof: The theorem is true for the graph with two nodes joined by an

edge. Assume it is true for all series-parallel graphs with m edges. We

will prove the theorem for series-parallel graphs with m+1 edges. Such a

S raph is obtained from a series-parallel graph with m edges by operation

!" (4.1) (Edge duplication) or operation (4.2) (Node insertion).

If an edge is duplicated, then every edge outset contains either both

the edge and its duplicate or neither of them. Therefore, if x is an

extreme point of P4 (G), at most one of the two variables X and x

associated with the edge and its duplicate takes a positive value and, by

the induction hypothesis, x must be integral.

If a node is Inserted on an edge, then let x 1 and x2 be the two new

edge variables. The new system of inequalities defining POlG) is made of

" two copies of the former system, one with x 1, the other with x2' instead

of the variable associated with the divided edge, to which Is added the

constraint x1 + x2  2. We weant to show that every extreme point of the

new system Is Integral.

;-'..,..
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If xl:x2 for some extreme point of P (G), then this extreme point

must be integral by the induction hypothesis. So assume xl>x 2 for some

extrbfe point. Note that no constraint involving x, can be tight except

possibly x1 + x2 > 2. If even this constraint is not tight, then x1 could

be decreased and therefore x was not an extreme point. Now assume x1 + x2

= 2. This equation determines the value of x2 whereas the rest of the

system defining x1 has an integral solution by the induction hypothesis.

So x2 is Integral too. Again the extreme point x is integral. ,

We conclude this section with a property of the extreme points of

I P 4(G). Our theorem can be proved using the next lemma.

A family of subsets (S3CN: izl,...,k) is said to be crossing if it

does not contain the empty set, it contains the complement of each of Its

members and, finally, given any 3 and S 2 in the family such that31 2

S Sj1 $1jS2 A 0 and 31 US 2 A N, then both S1flS2 and S1U52 belong to

the family. (The sets S,, and S2 are said to cross.)

Lemma 4.8 The family (S C N: x(S,5T) = 2) is a crossing family. P..

Furthermore, if S 1 and S2 are two sets of the family which cross, then

X(St 1 S 2 -S1 )2x(S1 flS2 ,-S)20 x( Sl-S2  x- 2

12S-2 x(sjfS 2,S2-S1) 1 2 2 1 ~*U2,S2 1 1.

Proof: Let S1 and 32 be two node sets in the family such that 3 7".

It 51, S2 A 0 and 81 VS 2 A N (i.e., the sets S1 and o2 cross). Let

3 S3 8 andS3 • 1 2  ndS4 2 SlU S2 .

VxS3 ,1 3 ) a xlS3'Sl-S2) + 1l3S32-3) + xl334)

x4S'4.,'4) x X SI201S ) + xlS2-Sl4) + X(S3, 4

-kida l
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1 , )  X ( S 3 5 2 -S 1 ) ) 1  )  + x ( S 1 "2 0 4 )

o( S ,12 )  x 3 I - )  xa5 3 , )  * x ( 2 - S 1 S 1 - S 2 ) + x ( 2 -S 1 ,3 4 ) ,
.-.

4

Therefore

x(S1-,1) + x(32 ,'2) 2 x(S 3 ," 3 ) + x(S4,3) + 2x(S - 2,S2-S1)

Since x(S ,31 )  -- x(2 32) x 2 and x(S3 S3 ) > 2, x(S4 S4) > 2, we deduce

that x(S 3 , 3 ) x X(34,54) a 2 and therefore the family iS crossing. In

addition we must have x(S1-S 2 , 2-51 ) 0.

Again summing the equations defining x(S1,S-) and x(S 2 ,S) but

grouping the terms differently, we get x(S 1 ,5)+x(S ,3') "

X( 2-5 1 ,5 2  '1 ) (51 -i 2 ,7 r2 ) + 2x(S 3 ,3'r). Since x(S1,X) z x(s 2 , 2 ) z 2

L mad (2-Sl, --Z)>2, x(S -TM 1~ >2, we deduce that x(S 2-S 1 *9=7- 1 )

X(S1S 2,S ) . 2 and x(S3, )

NOW substitute x(S3,M) x(S3)K x(S1,M, x(S 2 ,K)t x(S3 )an

x(S 1-S2 ,S 2-S 1 ) by their known value in the equations defining xS 3 ,S),

x(S%,), x(S.M) and (3 C). We obtain a system of four equations with

four unknowns whose unique solution is

X(S 3 9S -32  x( 3 ,52 -Sl) aX(S1-S42,1) ax(S2 -Slr4.j) 1. a

A family of subsets {S : Isl,...,k) Is said to be nested if, for any

iAJ, either SiCS or 3C3 or Sm a A. A fily of edge cutsts

(31,r) l,..,k} is said to be laminar if the family (Si:ial,...,k} is

nested.

Any extreme point of the polyhedron P (G) can be defined as the

unique solution of a system of IEI equations of the form

" 1.a 0 0 e E O, a n d (.

(.) x(SS) 2 for (S,3 #) B %

1%."..

4.% 

4 -44
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where ESE, B is a family of edge autsets and IBIIEoI=IEI. ..

Theorem 4.9 Let x be an extreme point of P 4 (G). The system (4.3), (4.4)

of equations defining x can be choseebso that the edge cutsets in (1.4)

form a laminar family.

Proof: Assume that x is an extreme point of P4(G) for which the theorem

does not hold. Consider a system of the form (4.3), (o.) where the

family B of cutsets is such that a(B)xZ(ISI:(S,P)gB) is minimum. We denote

this system by (EoB). ..". --

Since B is not laminar, there exist (S1,31) and ( in B such

that S $S S and S S A 0.1 2' 21 1

First assume that S1US A N. Since the system defining x has rank1-2

lEI, any valid equation can be obtained as a linear combination of

equations in this system. In particular, by lemma 4.8, we have the valid

equalities X(S1-S2, -)2 and x(S 2-Sj,S--S-r):2. So
* E(ai x(si, i) : (S ~)B Z(yeXe'ee%) :b}:i:

x(S2-S1, 2 -2) z Z(Gi x(Si t ) (siSi)g) + Z(Yexe:etEo)

where (ai:(Sili)eB) z Z(Oi:(S 1 ,l1 )sB)'1.

If a1A 0, we can replace x($1 ,3 )=2 in the system (Eo,B) by

x(S1- 2 ,S ):2 and still have a system whose unique solution is x. This

contradicts the minimelity of a(B).

Similarly 60O would allow us to replace x(32,S2)=2 In the system

(,B) by x(S2-SP3.)z2 contradicting the minimlity of a(B).

So we must have 61 02 * 0. Now we use the following fact, proved

in Lemma 4.8.

~%%~ % ~ %', *%*N.
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'(1  ) (s2 32)  x(SI S2 1-S2) + x(s2-$'j1,5- 1).2x(sinS2'S1US2)

Since x(S,,S1):2 and x(S2,3'2)=2 are independent of the 'E'-2 other

equations in the system (Eo,B), we must have a2=1 and B1=1. Therefore a

new system whose unique solution is x can be obtained from the system

(Eo,B) by replacing the equations x(S 1 , 1 ):2 and x(S2 , 2 ):2 by the two
equations x(S1-S2, z)2 and x(S2-S1, )2. This new system)z2.

contradicts the minimality of a(B).
Now assume that SlUS2:N. Then $1 23 1 and S 1 , 30 x(1

1212 1 d SS 2-3,s x( 11 1)

x(S2-SI,3 51). Similarly x(S2, 2) * x(S1-S2, 2). By replacing

- x(S1, 1):2 and x(S2,32)z2 in the system (EoB) by x(S1_ 2,72)=2 and

x(S2-S1,SS712, we obtain a contradiction to the minimlity of a(B).

," This completes the proof of the theorem. "

. This result 'is 60 been proven independently by W. Cunningham

in unpublished work on the polyhedron P4(G).
oS.

5. The Steiner Traveling Salesman Problem in Series-Parallel Graphs.

Let G:(N,E) be a graph, L:E1t a nonnegative length functionn and RQ-

a set of nodes called Steiner points. The Steiner tree problem is to find
tr ¢ ---

a minimum lengh In G which spans the nodes of N. This problem is known

to be NP-hard. Similarly one can define the Steiner Traveling Salesman

Problem as the problem of finding a minimum length cycle of G which goes

at least once through each node of 1r. We call such a cycle a Steiner

* tour. Recall that, In this paper, cycles may contain the same node or the

same edge more than once. In both Steiner problems the nodes of N-N may

or may not be on the tree or the cycle.

Many problems which are NP-hard in general graphs have been solved in

polynomial time in Series-Parallel graphs. Series-Parallel graphs

-I,
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(SP-graphs) were defined in Section 4. Takamizawa, Nishizeki and Saito

[81 and Wald and Colbourn [9] give linear time algorithms for various
Stehwmr trcs prob~m. Raotliff ae4 PiosnthalC;;] Solve thAe

problems on SP-graphs, including the tener Traveling Salesman problem in

graphs that model a rectangular warehouse, where it represents a set of

points along the aisles. These graphs are series-parallel. In this

section we show that the algorithm of Ratliff and Rosenthal can be

extended to all SP-graphs. The resulting algorithm runs in linear time.

We will also discuss briefly how the same technique can be used to solve

the Steiner tree problem in SP-graphs.

Consider a connected graph G with a two-node cutset, say {u,v}. Let

:DeFr~wt C1 &.9 herk !hAjfec*Ad bY A 1L, r)*S be the node set of a connected component of G(N-[u,v))nd G2 as the

graph induced by the edges of G which are not in G1 . Let T1 andljbe the

restrictions of a Steiner tour of G to GI andt repectively. We will

characterize a partial Steiner tour such as T1 by (a,b,c) where a is the

parity of the number of edges of T1 which are incident with the node u, b

A.
is the parity of the numbr of edges of T1 incident with v, and c is the

number of connected components of T1. The elements a and b can take the

values E (for even), U (for uneven or odd) and 0 (for zero) whereas c can

take the values 0,1,or 2. It is easy to enumerate all the possible

combinations of (a,b,c) which arise from partial Steiner tours.

Proposition 5.1 The partial Steiner tours can be partitioned into the

following seven classes:

(E,E,1),(E,E,2),(E,0,1),(O,E,1),(U,U,1),(0,O,1) and (0,0,0).

Note that (0,0,1) means that N401, i.e. there are no Steiner points

in N-S1. Similarly (0,0,0) means that there are no Steiner points in

3 U(u'v).

::: .. . ............. . .. ::-
,' ..,.,,-.,,. .,:. ,..:. ,f,', ..,, , ......, ..., ', .. .. ..,., , , ..,.. .. '..... ,, . . . ..-- .-. ,:
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Let T1 and T2 be def ined as above. Now let Tj be a partial Steiner

tour of Gwhich belongs to the same class as TV. The partial tour Ti is

also a valid completion of T2 into a Steiner tour of G. So, in each
p.2

class, it suffices to keep a minimum length solution. Let tka,b,c)(Gi be

the minimum length of a partial Steiner tour of Gi in the class (a,b,c).

* (Set A(a,b,c)(Gi) -if the class is empty). A minimum length Steiner

tour of G can be obtained by combining compatible partial tours and taking

*the overall minimum length solution. (This is nothing but the optimality

* principle of dynamic programming.) More precisely, the optimum solution

is obtained as the minimum of

UU1)(G1) + A(U,U,1)(G 2),

Z(E,E,1)(G1 ) + %(E,E,1)(G2)9

9(E,E,1)(G) + I(E,E,2)(G2)

L(E,E,1)(G) + L(EO1)(G21 ),

I(E,E,1)(G) + Z(O,E,1)(G )v

f(E,E,1)(G ) + t(O,O,)(G2)

&(E,E,2)(G1 ) + z(E,E,1)(G2),

i(OE,1)(G1) + t(E,E,1)(G2),

z(OE,1)G) + t(E,E,1)(G2)

.4..1(0,0,0)(G) + &(E,E,1)(G )t

L(EO,1)(G) + L(O,O,O)(G2)

I(O,E,1)(G1 + (,01*

JL(O,O,O)(G I + z(O,E,1)(G2)$

I(O,O,1)(G1) + L(O,O,O)CG 2),

t(OOO)(G 1) + L(O10,1)(02)
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In order to apply this procedure, the graph G must have a two-node

cutset. In SP-graphs, two-node outsets can be found recursively as

follows.

If every node of G has degree at most two, stop. Otherwise the graph

G must contain some parallel paths joining the same endpoints, say u and

v, [The existence of such paths follows by considering the sequence of

edge duplications and node insertions that led to the graph G and by

considering the last edge duplicatons performed in this sequence.] To

find the nodes u and v it suffices to ignore the nodes of G which have

degree two and to look for parallel edges in the resulting graph.

Now let G2 bexgraph induced by one of the paths joining u and v and

let G 1 be the graph induced by the other edges. The graph G 1 is an

SP-graph with fewerokthan G, and therefore the recursion can be applied to

G1

*". To complete the description of the algorithm it suffices to show how

to find a minimum cost partial Steiner tour of G2, for each of the seven

* -classes. See Figure 8.

2p..

-'
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Figure 8

In Cases (b), (c) and (g) there are no Steiner points between u and t and

between t' and v. In case (e), the nodes t and t' are two Steiner points

such that there is no other Steiner point between them and the distance

from t to t' is the largest among all pairs of nodes with this property.

Let Us turn now to the Steiner Tree problem. Since there are no

* parity requirements an edge in never taken more than once and there are

*only six classes to consider, namely V

(AOAO,2),(AO,A0,1),(A0,0,1),(0,j0,1),(0,0,1) and (0,0,0). The rest Of

* the algorithm is almost identical to the algorithm for the Steiner

Traveling Salesman problem, so the details are left to the reader.

V V
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We conclude this section by noting that, although we have a

S polynomial algorithm for the Steiner Tree and Steiner Traveling Salesman L

problem in SP-graph, we do not have a description of the corresponding

integer polyhedra.
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